55 research outputs found

    Tenfold your photons -- a physically-sound approach to filtering-based variance reduction of Monte-Carlo-simulated dose distributions

    Full text link
    X-ray dose constantly gains interest in the interventional suite. With dose being generally difficult to monitor reliably, fast computational methods are desirable. A major drawback of the gold standard based on Monte Carlo (MC) methods is its computational complexity. Besides common variance reduction techniques, filter approaches are often applied to achieve conclusive results within a fraction of time. Inspired by these methods, we propose a novel approach. We down-sample the target volume based on the fraction of mass, simulate the imaging situation, and then revert the down-sampling. To this end, the dose is weighted by the mass energy absorption, up-sampled, and distributed using a guided filter. Eventually, the weighting is inverted resulting in accurate high resolution dose distributions. The approach has the potential to considerably speed-up MC simulations since less photons and boundary checks are necessary. First experiments substantiate these assumptions. We achieve a median accuracy of 96.7 % to 97.4 % of the dose estimation with the proposed method and a down-sampling factor of 8 and 4, respectively. While maintaining a high accuracy, the proposed method provides for a tenfold speed-up. The overall findings suggest the conclusion that the proposed method has the potential to allow for further efficiency.Comment: 6 pages, 3 figures, Bildverarbeitung f\"ur die Medizin 202

    The role of the regulatory framework for innovation activities: The EU ETS and the German paper industry

    Get PDF
    Based on a research framework which combines environmental economics and innovation studies, we explore the relevance of the regulatory framework for innovation activities in the German paper industry, with a focus on climate poli-cies. Innovation activities considered include research and development, adop-tion and organizational change. Empirically, we mainly rely on the survey data of paper producers and technology providers. Findings suggest that innovation activities are mainly governed by market factors and (as yet) are hardly affected by the European Emission Trading System and other climate policies. Also, the impact of these policies on innovation activities is lower for technology providers than for paper producers. However, the majority of companies expect the ef-fects of the regulatory climate policy framework on innovation to increase by 2020. --

    Effects of Tissue Material Properties on X-Ray Image, Scatter and Patient Dose Determined using Monte Carlo Simulations

    Full text link
    With increasing patient and staff X-ray radiation awareness, many efforts have been made to develop accurate patient dose estimation methods. To date, Monte Carlo (MC) simulations are considered golden standard to simulate the interaction of X-ray radiation with matter. However, sensitivity of MC simulation results to variations in the experimental or clinical setup of image guided interventional procedures are only limited studied. In particular, the impact of patient material compositions is poorly investigated. This is mainly due to the fact, that these methods are commonly validated in phantom studies utilizing a single anthropomorphic phantom. In this study, we therefore investigate the impact of patient material parameters mapping on the outcome of MC X-ray dose simulations. A computation phantom geometry is constructed and three different commonly used material composition mappings are applied. We used the MC toolkit Geant4 to simulate X-ray radiation in an interventional setup and compared the differences in dose deposition, scatter distributions and resulting X-ray images. The evaluation shows a discrepancy between different material composition mapping up to 20 % concerning directly irradiated organs. These results highlight the need for standardization of material composition mapping for MC simulations in a clinical setup.Comment: 6 pages, 4 figures, Bildverarbeitung f\"ur die Medizin 201

    Fully-automatic CT data preparation for interventional X-ray skin dose simulation

    Full text link
    Recently, deep learning (DL) found its way to interventional X-ray skin dose estimation. While its performance was found to be acceptable, even more accurate results could be achieved if more data sets were available for training. One possibility is to turn to computed tomography (CT) data sets. Typically, computed tomography (CT) scans can be mapped to tissue labels and mass densities to obtain training data. However, care has to be taken to make sure that the different clinical settings are properly accounted for. First, the interventional environment is characterized by wide variety of table setups that are significantly different from the typical patient tables used in conventional CT. This cannot be ignored, since tables play a crucial role in sound skin dose estimation in an interventional setup, e. g., when the X-ray source is directly underneath a patient (posterior-anterior view). Second, due to interpolation errors, most CT scans do not facilitate a clean segmentation of the skin border. As a solution to these problems, we applied connected component labeling (CCL) and Canny edge detection to (a) robustly separate the patient from the table and (b) to identify the outermost skin layer. Our results show that these extensions enable fully-automatic, generalized pre-processing of CT scans for further simulation of both skin dose and corresponding X-ray projections.Comment: 6 pages, 4 figures, Bildverarbeitung f\"ur die Medizin 2020, code will be accessible soon (url

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    The Science Case for Multi-Object Spectroscopy on the European ELT

    Get PDF
    This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest 'first-light' structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes ('high multiplex' and 'high definition'). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the world's leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible.Comment: Significantly expanded and updated version of previous ELT-MOS White Paper, so there is some textual overlap with arXiv:1303.002
    corecore